구면삼각형은 구면 기하학에서 정의되는 삼각형의 한 형태로, 구의 표면 위에 위치한 세 개의 점(정확히는 구의 중심에서 동일한 거리만큼 떨어진 세 점)을 연결하여 이루어진 도형이다. 구면삼각형은 일반적인 평면 삼각형과는 다른 성질을 가지며, 특히 그 내부의 각도 합이 180도보다 크고, 0도에서 540도까지의 범위에 있는 경우가 많다. 이러한 성질은 구면의 곡률 때문에 발생하며, 구면의 크기와 모양에 따라 구면삼각형의 면적과 각의 크기 역시 달라진다.
구면삼각형의 세 변은 구의 호로 이루어져 있으며, 이 호의 길이와 구면삼각형의 면적은 관련된 구의 반지름에 의존한다. 구면삼각형의 각도는 구면측량학에서 연구되며, 이를 통해 비행 경로, 항해, 천문학 등 다양한 분야에서 응용된다. 또한, 구면삼각형은 넓이의 계산 및 각도의 측정에 있어 여러 가지 공식이 있으며, 특히 해버사이드 공식(Haversine formula) 등이 많이 사용된다.
구면삼각형은 또한 구면 삼각법의 기초가 되며, 이론적으로 삼각형의 각과 변의 관계를 정의하는 수학적 모델로 기능한다. 이러한 구면삼각법은 지구의 곡률을 고려하여 거리와 각도를 측정하는 데 중요하다. 구면삼각형의 각을 계산하는 주요 공식 중 하나는 구면의 중심각과 관련된 삼각관계에 의해 도출된다.
구면삼각형은 과학과 기술에서 유용한 개념이며, 특히 GPS와 같은 현대적인 위치 추적 시스템에서도 중요한 역할을 하고 있다.